
ar
X

iv
:2

50
5.

01
17

1v
1 

 [
cs

.S
E

] 
 2

 M
ay

 2
02

5
1

An instrument to measure factors that constitute

the socio-technical context of testing experience
Mark Swillus∗, Carolin Brandt† and Andy Zaidman‡

Delft University of Technology

The Netherlands

Email: ∗m.swillus@tudelft.nl, †c.e.brandt@tudelft.nl, ‡a.e.zaidman@tudelft.nl

Abstract—We consider testing a cooperative and social practice that is

shaped by the tools developers use, the tests they write, and their mindsets

and human needs. This work is one part of a project that explores the
human- and socio-technical context of testing through the lens of those

interwoven elements: test suite and tools as technical infrastructure and

collaborative factors and motivation as mindset. Drawing on empirical
observations of previous work, this survey examines how these factors

relate to each other. We want to understand which combination of factors

can help developers strive and make the most of their ambitions to

leverage the potential that software testing practices have. In this report,
we construct a survey instrument to measure the factors that constitute

the socio-technical context of testing experience. In addition, we state

our hypotheses about how these factors impact testing experience and
explain the considerations and process that led to the construction of the

survey questions.

I. INTRODUCTION

Software testing practices, which we define as the systematic usage

of software development tools to automate the verification process

of software, is an effective way to prevent unexpected failures of

software systems which can have a detrimental effect on people and

society. For example, in 2024, a software bug that co-occurred with

a software testing system bug [1], grounded flights at airports around

the world and even disrupted hospital operation [2]. Many researchers

and practitioners also recognize benefits that go beyond failure

prevention [3]. Testing can facilitate software development processes

and is considered as a core component in software development

methodologies like extreme programming [4]. Given its impact on

both software quality and the development process, academics have

been encouraging research on software testing practices for more than

40 years. And research in this area continues to be exciting. Recent

advancements in the field of AI, especially with the usage of large

language models for code generation have provoked new approaches

to testing.

Today, there is a vast ecosystem of concepts, tools, and approaches

for software testing. Given this diversity, one would think every

developer is able to integrate testing practices into their projects in a

way that suits their needs. However, research into testing experience

(TX) paints a different picture. Developers demonstrate emotional

responses to testing [5], seem discouraged from meeting their own

testing ambitions [6], and even perceive it as a daunting task [7].

Despite the widely recognized benefits of testing and the availability

of tools and techniques for almost every use case, it is still seen as

optional. Especially when time is short and deadlines are near [8].

As researchers based in the Netherlands, we find the comparison to

helmet use among Dutch cyclists fitting: Studies have demonstrated

that helmets save lives time and again [9]. The advantages and impor-

tance of helmet use are clear, and yet most Dutch cyclists, confident

in their habits and environment, choose to ride without. Further, in

bordering countries like Germany, where cultural and infrastructural

factors differ, helmet usage is more common. The reasons for not

wearing helmets in the Netherlands, just like the choice of developers

not to test, we argue, are not of a purely objective or technical nature.

Both phenomena can only be understood by considering the broader

context in which they occur. In the case of cycling, this broader

context concerns practical aspects like infrastructure or road safety,

and personal concerns like the leisureliness, confidence, and joy with

which people use their bicycles. Our prior work explores the broad

context that influences testing decisions, and we find that in the

case of testing, practical aspects and personal concerns play a role

as well [10]. A combination of various technical and non-technical

factors, such as the availability of testing infrastructure (tools and

test automation) and the presence of a testing culture seem to play

an important role. Adoption and adaptation of testing strategies does

not seem to be a linear process. Rather, it can better be described as

a collective pushing of ambitions, ideas, and technical possibilities

through a filter of available materials and techniques. In this report,

we continue our investigation of this entanglement. We first propose

hypotheses about the conditions under which testing is enabled or

inhibited, and then present a survey instrument with which we are

going to test those hypotheses. By publishing our research design

and survey instrument ahead of data collection, we demonstrate

transparency and methodological rigor. Publishing preconceptions

and intentions in advance precludes practices like HARKing (hypoth-

esizing after results are known), which can compromise the integrity

of research projects and the validity of findings.

A. Pre-registration of hypotheses and research design

Studies like the recent work of Cologna and Mede [11], who inves-

tigate and discuss public trust in scientists, echo what can be observed

in contemporary public discourse and policymaking: if a fraction of

society loses its trust in scientific work, the consequences, like in the

case of COVID-19, can be disastrous [12]. According to Cologna and

Mede [11], the majority of people still consider science an important

foundation for change. However, rapid developments in artificial

intelligence have raised new concerns about the integrity of research

and the reliability of research findings [13]. In the context of these

developments, we are motivated to demonstrate transparency, rigor,

and integrity in our work. Engaging in practices promoted by open

science initiatives is one way to act on that motivation. By making

the research process and results more accessible and transparent, open

science initiatives improve reproducibility and foster greater trust in

scientific work. In the discipline of software engineering, this is often

done by publishing replication packages, which include datasets and

source code when the results of a project are published. However,

transparency can begin earlier with the publication of research design

and instruments, before data is collected and analyzed. For example,

survey instruments can be shared prior to data collection to allow

other researchers to assess or reuse them in different contexts, inde-

pendent of the results of the research project they were constructed

for (see [14]). In line with this practice, we are publishing the present

report, which includes the survey instrument we intend to use before

collecting and analyzing data.

http://arxiv.org/abs/2505.01171v1


2

In empirical software engineering research, the publication of

research designs is becoming more common. Some conferences and

journals now offer registered reports tracks [15], [16], where the

study design undergoes a peer-review process before data is gathered.

Early feedback and transparency help improve methodological rigor,

and in many cases, this feedback also comes with a commitment

to publish the study regardless of its results. On the one hand, this

discourages practices like HARKing (hypothesizing after results are

known), which can compromise the validity of findings. On the other,

it encourages the publication of negative results, which are often

undervalued but critical to advancing knowledge in the field. Not

being pressured to produce positive outcomes to secure publication,

researchers are more likely to uphold the scientific imperative of

disinterestedness.

By publishing our research design ahead of data collection, we act

on our motivation to strive for a more open and trustworthy research

culture in empirical software engineering. This report can therefore

also be understood as a commitment to publish outcomes independent

of their implications for our prior work.

II. METHOD

Our prior exploratory work investigated testing experiences using

qualitative research strategies. In [6], we analyze documents to

uncover the roots of sentimental attitudes of developers towards test-

ing. Following that, in [10], we analyzed semi-structured interviews

to explore the topic further. Data triangulation enables researchers

to understand a phenomenon from multiple perspectives. Method

triangulation reduces the bias that using a single method to compare

different perspectives can introduce [17]. We therefore choose a

survey-based study design to deepen our work on socio-technical

aspects of software testing. In the following sections, we describe

how we construct the survey instrument. We follow Kitchenham and

Pfleeger [18], which provides a guideline to create personal opinion

surveys. The rest of this section is organized according to the six

activities Kitchenham et al. identify in their guideline. As this report

is published prior to data collection, we only consider the first four

activities, which lead to the construction of a survey instrument and

a preliminary plan for its evaluation.

• Setting the objective

• Survey Design

• Developing the survey instrument

• Evaluating the survey instrument

III. SETTING THE OBJECTIVE

Declaring the research objective, including the hoped-for out-

comes, is necessary to constrain the scope of questions in a sur-

vey [19]. To identify the research objective, we choose a top-down

approach [20, p.10], breaking down the broader research question we

want to tackle into concrete hypotheses based on prior work.

A. Research Questions

We argue that the many factors influencing developers’ engagement

with testing often lead to unanticipated outcomes, which can under-

standably provoke emotions. We align with Rooksby, Rouncefield,

and Sommerville [21] who describe testing as a stochastic process:

What makes a test plan effective is often the ability to handle various

unpredictable contingencies as they arise. In our prior work [10], we

identify factors that can give rise to these contingencies, and others

that enable developers to manage them. The objective of this study

is to further investigate the interplay of those factors:

RQ1 How does the interplay of testing conditions shape a

software developer’s motivation to use testing?

RQ2 How does the interplay of testing conditions shape a

software developer’s perception of the value of testing?

Through our preliminary work, we observed that concrete condi-

tions influence how testing is perceived and used, as well as which

factors encourage developers to reflect on their testing practices.

While we have identified conditions related to developers’ motivation

to test, we have yet to determine whether there are common patterns

or combinations that stimulate or inhibit testing. A key goal of our

work is to identify these relationships and examine how they correlate

with testing usage and motivation.

RQ3 Which sets of conditions are common among developers

who are motivated to engage in testing?

To investigate this question, we aim to measure developers’ mo-

tivation regarding software testing, their self-reported perception of

effort spent on testing, and their evaluation of how conditions such as

testing infrastructure, complexity, or a developer’s autonomy impact

their efforts. We then test a set of hypotheses that emerged from our

previous qualitative exploratory work.

IV. SURVEY DESIGN

We choose to construct a descriptive cross-sectional survey which

aims to discover factors that affect software testing (predispositions)

and their relationship with each other. Participants are asked for

information at one fixed point in time. The survey therefore provides

a snapshot of what developers experience. We implement the survey

using a web-based self-administered questionnaire, as this format

serves both our need for method triangulation and facilitates simple

distribution and coverage of the population we want to study.

Before we approach the implementation of the survey instrument,

we conduct a lean literature review to determine how others have

investigated the factors we want to measure with our instrument. Re-

using tested and peer-reviewed instruments increases the credibility

and reproducibility of results.

V. LEAN LITERATURE REVIEW

By reviewing available literature, we establish to what extent the

construction of a new instrument is required. Re-using tested and

peer-reviewed instruments increases the credibility and reproducibil-

ity of results. We also familiarize ourselves with approaches others

have chosen to investigate similar phenomena, in order to learn how

the many aspects of it can be observed, conceptualized, and measured.

Identifying measurable variables through this process is the first step

in constructing survey questions. The aim of a lean literature review

is not to provide a comprehensive overview of all relevant topics, but

rather to scan and scope, optimized to serve its key aims quickly and

as easily as possible [22, p.119].

1) Motivation: Motivation of software developers has already

been researched for over 40 years, as it has been identified as an

important factor impacting software developer productivity. Ques-

tionnaires are often used to measure various aspects that relate to

motivation [23]. Over the years, many different motivators that affect

developers, including recognition, trust, autonomy, and variety of

work, have been identified [23], [24]. Different models of motivation

of software developers have been proposed [25], and though many

different perspectives on motivation have been researched, it remains



3

a complex topic. As the world is changing, past work on motivation

needs re-validation to remain insightful. Unfortunately this is done

very little [25]. A more recent study by Verner, Babar, Cerpa, et

al. [26] about motivation using survey instruments finds that social

factors and human needs are important for developer motivation.

Developers seem to be motivated by a project manager with good

communication skills, in projects where risk is controlled, when

the work environment is supportive, In their survey, Verner, Babar,

Cerpa, et al. [26] measure motivation by asking developers in a

self-administered online questionnaire about the motivation of their

team members. Similar to Daka and Fraser who asking participants

directly: ”What motivates you to write unit tests?” [27]. Straubinger

et al., who investigate opinions of software developers regarding

testing, take a different approach because they identify that motivation

is an overloaded term [28]. Motivation, they argue, is a multi-

dimensional concept which needs to be considered from many angles

in order to be analysed. They do not directly ask developers about

their motivation but instead ask about circumstances of their work that

transcend motivation. Aligning with this view, social psychologists

consider motivation to be a construct that cannot be recorded or

observed directly. Accordingly, measuring motivation in experiments

or through questionnaires is considered a non-trivial task. In a guide-

line to measure motivation, Touré-Tillery et al. suggest differentiating

between outcome-focused motivation to complete a goal, and process-

focused motivation (more commonly known as intrinsic motivation),

which has less emphasis on the outcome and includes elements such

as appropriate means and enjoyment during goal pursuit [29]. The

first resembles an attitude of getting it done, the latter of doing it right.

In experiments, indicators for those two aspects can be measured

using different means. For example, outcome-focused motivation can

be revealed through a subject’s positive evaluation of goal-congruent

constructs such as means, objects, or persons, and a subject’s negative

evaluation of goal-unrelated constructs such as distractions. Process-

focused motivation is, in this context, revealed by positive evaluation

of the process [29].

2) Human factors and software development processes: Several

recent studies investigate how human and social factors influence

software development practices and the organization of software

development projects. Investigating success factors of agile method

adoption using a survey instrument, Misra et al. find that technical

competency, team size, and planning are not strong factors, but

that corporate culture and training initiatives have a significant

effect [30]. Instead of measuring success factors like Corporate

culture using with questions, each success factor was measured using

a set of questions that collectively represent the factor. Dybå uses

a similar approach in a questionnaire-based study investigating the

impact of company size on software process improvement [31].

According to their study, the size of companies in which software is

developed influences how well projects can leverage different kinds

of knowledge and expertise. To investigate influences on software

process improvement, Dybå identifies six key success factors and

breaks each factor down into several indicators, each measured

using one question. The approach is motivated by the argument

that complex concepts like software process improvement success

factors can not be reliably measured through simple one-dimensional

questions. Instead of measuring a factor with one question, multiple

questions are therefore combined to measure each concept [31]. A

similar approach is taken by Machuca-Villegas et al., who investigate

the perception of human factors that influence the productivity of

software development teams [32]. In their survey instrument, they

first consider key human factors and then scrutinize each using several

questions [33]. Using the perspective of human factors, they find a

positive influence of empathy, social interaction, communication, and

autonomy on productivity.

3) Software testing: Opinions and needs of developers: In an

attempt to close a gap between academic and practitioner views

on software testing, Rafi et al. use a combination of a systematic

literature review and a practitioner survey to investigate benefits and

limitations of software testing practices [3]. Using their literature

review, they derive a set of hypotheses which they test by asking prac-

titioners whether they agree or disagree. As the studies considered

in their review mostly focus on technical aspects, the results of their

study also primarily concern technical aspects of software testing. For

example, their survey demonstrates that the benefits of test automation

are related to test reusability, repeatability, test coverage, and effort

saved in test execution [3]. Daka and Fraser [27] also investigate

testing practices with a focus on established practices and problems.

They identify that there is a need to improve the technical capabilities

of unit testing, especially in terms of automation. However, they also

find that the need for testing is often motivated organizationally, and

that a developer’s own conviction is a strong factor. Like Rafi et

al. [3], Daka and Fraser [27] measure aspects with distinct questions,

but to increase the validity of those questions, they use verification

questions—questions that measure the same variable using alternate

wording. They then disregard responses where answers to the same

question diverge. All questions were derived from their research

questions, but how exactly those questions were developed is not

clearly explained [27].

VI. HYPOTHESES AND VARIABLES

In our prior work [10], we identify eleven conditions that affect

developers’ testing practices:

• Complexity

• Software Development Process

• Safety & Responsibility

• Business and Application Domain

• Vision

• Resource Usage

• Mandates

• Testing Infrastructure

• Testing Culture

• Community Perspective

• Personal Leanings

We also proposed a theory that conceptualizes software testing as a

dualism, composed of ephemeral and material elements that influence

each other [see 10, pp.17-22]. To approach the research questions

we above, we focus our investigation on the interplay of a subset of

above-mentioned conditions. First, we investigate how organizational

conditions relate to developers’ motivation to use testing practices and

the extent to which testing is used in projects. Second, we explore the

relationship between complexity and testing infrastructure in relation

to testing motivation. Third, we examine how material and ephemeral

aspects of testing influence one another.

1) Software Process and Testing Motivation: The introduction or

adaptation of software testing methods within an organization can

be seen as part of an effort to improve the software development

process. Dybå [31] identified that the success of process improvement

efforts depends on the correlation of particular organizational factors,

including company size. Large companies benefit from structured

processes that leverage past knowledge, while smaller organizations

benefit more from experimentation and exploration [31]. Our prior

research suggests that business context and software development

organization influence testing practices as well [10], [21]. Autonomy

(reflected in the capacity to experiment) and the exploitation of

existing knowledge appear to play major roles. Based on these



4

findings, we propose the following hypotheses about the relationship

between autonomy, knowledge sharing, and company size in the

context of testing:

[H1] Organizational factors affect testing practices

H1.1 In large companies, testing is used more extensively

when past knowledge is extensively leveraged

H1.2 In small companies, testing is used more extensively

when new ideas and exploratory approaches are em-

braced

[H2] Motivation to test (both goal-focused and process-focused)

stems mainly from individual conviction and not from

organizational factors. However, organizational factors do

impact the extent to which testing is used.

H2.1 Motivation to test is not significantly influenced by

organizational factors

H2.2 The extent of testing is influenced by organizational

factors such as business sector, mandates and company

size

Testing these hypotheses requires measuring the following vari-

ables, for some of which measurement methods are described in the

literature we reviewed in Section V:

• Company size (H1)

• Business sector (H2)

• Employee participation [14] and Mandates (H2)

• Extent of testing (H1)

• Exploitation of existing knowledge [14] (H2)

• Exploration of new knowledge [14] (H2)

• Motivation (process-focused and goal-focused) [29] (H2)

2) Complexity and Testing Infrastructure: The complexity of a

software system can influence testing motivation in several ways.

When software consists of multiple interacting components, system-

atic testing can help developers maintain an overview of the project.

Testing becomes a way to reduce perceived complexity. However,

complexity can also discourage testing if simple approaches are

inadequate and the effort required for effective testing becomes over-

whelming [6]. We argue that the availability of testing infrastructure

and team culture significantly mediate this relationship:

[H3] The presence of usable testing infrastructure increases the

process-oriented motivation to test

[H4] The (perceived) complexity of a project impacts motivation

to test

H4.1 Complexity decreases process-oriented testing motiva-

tion

H4.2 Complexity increases process-oriented motivation and

goal-oriented motivation if testing infrastructure is

present

H4.3 Complexity decreases process-focused motivation if

testing infrastructure is absent

Testing these hypotheses requires measuring the following vari-

ables, for some of which measurement methods are described in the

literature we reviewed in Section V:

• Testing infrastructure (H3, H4)

• Motivation (process-focused and goal-focused) [29] (H3, H4)

• Complexity (H4)

3) Material and Social Construction of Testing: In prior work[10],

we conceptualized software testing as an interplay between material

elements (e.g., test frameworks, source code, documentation) and

ephemeral elements (e.g., discussions, culture). Developers leave

signatures in code that reflect their testing values, while discussions

and team culture produce echoes that foster testing culture. Testing-

signatures can be understood as traces in artifacts (e.g., testing in-

frastructure) that represent developers’ knowledge and experience and

can spark reflection when encountered. We argue that the presence of

this record of experience and knowledge can, when properly exploited

by an organization stimulate discussions and reflections on testing.

Testing-echoes are collaborative reflections, of ideas and knowl-

edge in the context of testing. We argue that this collaborative

exploration of new ideas and a positive testing culture leads to the

extension of testing efforts. In this context, we argue that it is the

process of reflection that motivates developers to extend their testing

efforts.

We further hypothesize that ambitions to extend testing practices

benefit from autonomy, meaning the developer has influence on how

the development process is structured.

[H5] Knowledge exploration positively influences the extent of

testing efforts

H5.1 Active discussion and interaction influences the extent

to which knowledge exploration impacts testing effort

extension

[H6] Knowledge exploitation positively influences the extent to

which testing practices are reflected

H6.1 The presence of testing infrastructure influences the

extent of reflection on testing

[H7] When testing practices are discussed interactively, moti-

vation (goal-focused) is higher and adoption of testing

practices is greater

[H8] Whether reflection through testing echoes leads to code

changes depends on the participant’s level of autonomy

Testing these hypotheses requires measuring the following vari-

ables, for some of which measurement methods are described in the

literature we reviewed in Section V:

• Exploration of new knowledge [14] (H5)

• Extent of testing (H5, H7)

• Discussion and interaction (H5, H6, H8)

• Exploitation of existing knowledge [14] (H6)

• Testing infrastructure (H6)

• Motivation (goal-focused) [29] (H7)

• Employee participation [14] and Mandates (H8)

A. Summary

We aim to illuminate relationships between organizational, techni-

cal, social, and cultural factors that shape software testing practices.

The survey instrument we construct to investigate these relationships

is designed to deepen our understanding of how and why developers

are motivated to adopt testing, while also providing actionable

insights to enhance testing processes across diverse development

environments. In order to reach our research objective we measure

10 variables:

1) Company size (H1)

2) Business sector (H2)

3) Extent of testing (H1, H5, H7)

4) Complexity (H4)

5) Testing infrastructure (H3, H4, H6)

6) Discussion and interaction (H5, H6, H8)

7) Employee participation [14] and Mandates (H2, H8)



5

8) Exploitation of existing knowledge [14] (H2, H6)

9) Exploration of new knowledge [14] (H2, H5)

10) Motivation (process-focused and goal-focused) [29] (H2, H3,

H4, H7)

Using a questionnaire to measure those variables we test eight

hypotheses and aim to generate insights that enable more effective

integration of testing strategies, ensuring that tools and techniques

align with developers’ needs, goals, and the broader organizational

contexts in which they are employed.

VII. IMPLEMENTATION

For the 10 variables we want to measure with a questionnaire,

we re-use three key factors of software process improvement in

organizations from Dybå [14].

We adapt the questions were needed to fit our focus on software

testing. To measure motivation, we use indicators for process-focused

and goal-focused motivation as suggested by [29]. To measure goal-

focused motivation we construct 5 questions which address the recall

and evaluation of goal-related constructs that relate to testing. To

measure process-focused motivation we construct 3 questions which

address the evaluation of the impact of testing on the process of

software development.

Of the other six questions, we measure two variables (company size

and business sector) with single-item questions as they are similar to

demographical questions and therefore unambiguous. For company

size, a range from a set of fixed values can be selected (e.g. 2-10, 11-

50, 51-200, 201-500, 501+). Similarly, we use the list from the Global

Industry Classification Standard (GICS1) from which participants can

select the Industry sector that best fits their organization.

Both our prior work and the literature review presented above

indicate that the remaining variables we want to measure are in-

herently complex and multi-faceted. To reliably measure complex

variables, we therefore follow an approach similar to [14]. Instead

of using a single question to measure the four remaining, complex

variables we use multi-item scales which measure a single variable

with multiple representative indicators. The scores (in this context

called scale scores) of each variable are then calculated through the

sum of all respective indicators. For each factor we want to measure,

we therefore construct three or more indicators. For each indicator

we then construct one question.

We derive indicators for each variable with our prior work on

software testing experience [10]. We then construct questions by

turning each indicator into one unambiguous statement. For example,

to measure complexity, one indicator is a developers’ perception of

technical complexity of the project. From this indicator, we derive

the following statement, which is answered using a 5-point Likert

scale ranging from strongly agree to strongly disagree: I consider

the software project as complex: it is large and consists of many

components which interact with each other. We choose 5-point

Likert scales with the same options for all questions in our survey

instrument, except for demographic questions. Table I contains all

factors and corresponding questions.

1� msci.com/our-solutions/indexes/gics

https://www.msci.com/our-solutions/indexes/gics


6

TABLE I: Multi-scale variables and corresponding questions

Variable Indicator Question

Extent of Testing

Extent to which testing is used as an individual I am making extensive use of software testing

activity to develop software techniques in my daily software development activities

Extent to which testing is used by the project The project for which I develop software is making

to develop software extensive use of software testing

The organization supports and embraces software The organization in which the project is embedded

testing promotes the usage of software testing practices

Degree to which testing is mandated Testing is strictly required when contributing

to the software I develop

Complexity

Perception of technical complexity of project The software project I contribute to is large and

consists of many components which interact with each other

Usage of standard tools We mainly use common, standardized technologies when

we develop, test, build and distribute the software we develop

Degree to which best practices can be used Large parts of the code base use

common patters that can be learned in books or online.

Infrastructure

Extent of tool support for testing goals Our project is built upon strong testing frameworks

which include elements like test suites and development tools

Ability to use testing with respect to I (would) have enough time to expand and improve our

resources available project’s testing framework

Importance of existing source code for the I often reuse existing source code when developing

extensions of test suites new tests

Extent of explicit guidelines for testing Guidelines and expectations for testing are clearly defined

in the project and explicitly documented

Degree to which discussions translate to Conversations about testing usually lead to actual

contributions improvements in our testing efforts

Degree to which testing is learned through I learned a lot about testing through colleagues who taught

mentoring me how to approach it

Discussion and Extent of implicit guidelines for testing I mainly know what is expected of me in terms of testing

Interaction in the project by interacting and talking with other developers

Extent to which testing culture can establish There is a shared understanding in our project that parts

something as untestable of the software we develop are untestable

Extent to which testing culture influences In our team testing tasks are considered to be

the perceived difficulty of testing in project straight forward and easily done

Extent of employee involvement in decisions Software developers are involved to a great extent

that should best be done at their own level in decisions about the implementation of their work

Extent to which employees contribute with Software developers are actively contributing with

Employee improvement proposals proposals to adapt testing strategies

Participation Extent of developer participation in the Software developers are actively involved

formalization of routines in creating routines and procedures for testing

Extent of ongoing dialog and discussion about We have an on-going dialogue and discussion about

software development software development

Extent of ongoing dialog and discussion about We have an on-going dialogue and discussion about

software testing software testing

Table continued on next page



7

Table continued from previous page

Variable Indicator Question

Extent to which existing knowledge is exploited We exploit the existing organizational knowledge to the utmost extent

Exploitation of Extent of learning from past experiences We are systematically learning from the experience with prior projects

Existing Degree to which formal routines are based on Our routines for software testing are based on

Knowledge past experience experience from prior projects

Degree of systematization of past experience We collect and classify experience from prior projects

Degree of internal experience transfer We put great emphasis on internal transfer of

positive and negative experience

Degree of adaptability to rapid change, increasing We are very capable at managing uncertainty in the

complexity and environmental uncertainty organization’s environment

Extent to which innovation/change is encouraged In our organization, we encourage innovation and creativity

Degree of experimentation with new ideas, We often carry out trials with new software

Exploration of strategies and technologies engineering methods and tools

New Knowledge Degree of experimentation with new ideas, We often conduct experiments with new ways of

strategies and technologies working with software development methods.

Ability to question underlying values We have the ability to questions established truths

Degree of flexibility in task execution We are very flexible in the way we carry our our work

Degree of detail in task specification We do not specify work processes more than what

is absolutely necessary

Importance of matching the variety and We make the most of the diversity and interests to manage

complexity of the organization’s environment the variety and complexity of the organizations environment

Extent to which testing is perceived to Software testing practices enable developers

contribute to software quality goals to write better code

Degree of accessibility and memory for I can name several testing tools and methods that

Motivation goal-congruent constructs (means, objects, person) (would) help me to achieve the project’s goals

(goal-focused) Degree of accessibility and memory for I can recall many situations in which testing related

goal-incongruent constructs (temptations) work distracts me from getting the job done

Degree of positive evaluation of goal-congruent Testing tools, methods and testing contributions of my

constructs (means, objects, persons) colleagues are crucial for the success of our project

Degree of negative evaluation of goal-incongruent Unnecessary testing tasks often distract me and hinder

constructions (temptations, distractions) my progress towards my actual goals

Extent to which software testing contributes to pr. Software testing increases my productivity

Motivation Positive experience from the process I enjoy using software development more when I use

(process-focused) software testing tools and practices

Positive evaluation of the process The use of software testing methods and tools

positively impacts my workflow

End of table



8

Score Answer Criteria

1

• Not relevant so it should be removed
• This item is not clear
• This item has no logical relationship with the factor.
• This item can be removed without affecting the factor
measurement

2

• It must be rewritten
• The item requires several modifications or
a very large modification in terms of wording or structure
• A very specific modification is required for some wording
• The item has a moderate relationship with the factor
it is measuring
• The item is relatively important

3

• This item is relevant
• This item is clear with proper semantics and syntax
• This item is completely related to the factor being measured
• This item is very relevant and must be included

TABLE II: Item assessment criteria for survey instrument evaluation

VIII. EVALUATING THE SURVEY INSTRUMENT

Before turning the instrument into a web-based questionnaire that

can be self-administered by participants, all questions and answers

should be evaluated. Evaluation servers multiple goals[18]

• Ensure that questions are understandable

• Assess the likely response rate

• Determine the reliability and validity of the instrument

• Test the data analysis techniques on expected outcomes

To evaluate the survey instrument we first conduct an unstructured

interview with a software developer who we consider to be an expert

on the topic. After the interview in which we discuss the research

objective we incorporate the interviewee’s feedback into the first draft

of our questionnaire and then give our questionnaire the interviewee

for a more structured evaluation. We ask them to rate each question

on a scale from one to three, ranging from Not relevant - should be

removed to relevant - can remain as is and provide explanations for

each answer in free text fields. We provide an extensive description

of each point on the evaluation scale, which we take from the work

of Machuca-Villegas et al. [33] can be seen in Table II.

After we incorporate this in-depth feedback, we conduct a pilot

study for which we recruit a small group of software developers to

complete the questionnaire and encourage them to provide feedback

about questions using free-text fields. Through feedback from the

pilot study we further improve wording and clarity where possible.

We also use the data gathered in the pilot study to run preliminary

tests for reliability and validity.

REFERENCES

[1] B. Pariseau, CrowdStrike outage underscores software

testing dilemmas, Jul. 2024. [Online]. Available:

https://web.archive.org/web/20250226164043/https://www.techtarget.com/searchsoftwarequality/news/366599175/CrowdStrike-outage-underscores-softw

(visited on 04/09/2025).

[2] E. Pilkington and L. Aratani, US transportation,

police and hospital systems stricken by global

CrowdStrike IT outage, Jul. 2024. [Online]. Available:

https://web.archive.org/web/20250306211836/https://www.theguardian.com/technology/article/2024/jul/19/crowdstrike-microsoft-outage

(visited on 04/09/2025).

[3] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses,

K. Petersen, and M. V. Mantyla, “Benefits and limita-

tions of automated software testing: Systematic literature

review and practitioner survey,” in 2012 7th International

Workshop on Automation of Software Test (AST), IEEE,

Jun. 2012, pp. 36–42, ISBN: 978-1-4673-1822-8 978-1-4673-

1821-1. DOI: 10.1109/IWAST.2012.6228988. [Online]. Avail-

able: http://ieeexplore.ieee.org/document/6228988/ (visited on

12/01/2021).

[4] D. Wells, ExtremeProgramming.org, 2009. [Online]. Available:

https://web.archive.org/web/20250309052557/http://www.extremeprogramming.or

(visited on 04/22/2025).

[5] I. Evans, C. Porter, and M. Micallef, “Scared, frustrated

and quietly proud: Testers’ lived experience of tools and

automation,” en, in European Conference on Cognitive Er-

gonomics 2021, ACM, Apr. 2021, pp. 1–7, ISBN: 978-1-

4503-8757-6. DOI: 10.1145/3452853.3452872. [Online]. Avail-

able: https://dl.acm.org/doi/10.1145/3452853.3452872 (visited

on 01/08/2024).

[6] M. Swillus and A. Zaidman, “Sentiment overflow in

the testing stack: Analyzing software testing posts on

Stack Overflow,” en, Journal of Systems and Software,

vol. 205, p. 111 804, Nov. 2023, ISSN: 0164-1212.

DOI: 10.1016/j.jss.2023.111804. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121223001991

(visited on 07/31/2023).

[7] K. Stobie, “Too Darned Big to Test: Testing large systems is a

daunting task, but there are steps we can take to ease the pain.,”

en, Queue, vol. 3, no. 1, pp. 30–37, Feb. 2005, ISSN: 1542-

7730, 1542-7749. DOI: 10.1145/1046931.1046944. [Online].

Available: https://dl.acm.org/doi/10.1145/1046931.1046944

(visited on 04/09/2025).

[8] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist,

“Impediments for software test automation: A systematic

literature review: Impediments for Software Test

Automation,” en, Software Testing, Verification and

Reliability, vol. 27, no. 8, e1639, Dec. 2017, ISSN:

09600833. DOI: 10.1002/stvr.1639. [Online]. Available:

https://onlinelibrary.wiley.com/doi/10.1002/stvr.1639 (visited

on 12/01/2021).

[9] C. M. Büth, N. Barbour, and M. Abdel-Aty, “Effec-

tiveness of bicycle helmets and injury prevention: A

systematic review of meta-analyses,” en, Scientific Re-

ports, vol. 13, no. 1, p. 8540, May 2023, ISSN: 2045-

2322. DOI: 10.1038/s41598-023-35728-x. [Online]. Available:

https://www.nature.com/articles/s41598-023-35728-x (visited

on 02/27/2025).

[10] M. Swillus, R. Hoda, and A. Zaidman, Who cares about

testing?: Co-creations of Socio-technical Software Testing Ex-

periences, Apr. 2025. DOI: 10.48550/arXiv.2504.07208. [On-

line]. Available: http://arxiv.org/abs/2504.07208 (visited on

04/22/2025).

[11] V. Cologna and N. G. Mede, “Trust in scientists and

their role in society across 68 countries,” Nature

Human Behaviour, Jan. 2025, ISSN: 2397-3374. DOI:

10.1038/s41562-024-02090-5. [Online]. Available:

https://doi.org/10.1038/s41562-024-02090-5.

[12] L. C. Hamilton and T. G. Safford, “Elite Cues and

the Rapid Decline in Trust in Science Agencies on

COVID-19,” en, Sociological Perspectives, vol. 64, no. 5,

pp. 988–1011, Oct. 2021, ISSN: 0731-1214, 1533-8673.

DOI: 10.1177/07311214211022391. [Online]. Available:

https://journals.sagepub.com/doi/10.1177/07311214211022391

(visited on 04/09/2025).

[13] F. R. Elali and L. N. Rachid, “AI-generated research paper

fabrication and plagiarism in the scientific community,” en,

Patterns, vol. 4, no. 3, p. 100 706, Mar. 2023, ISSN: 26663899.

DOI: 10.1016/j.patter.2023.100706. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S2666389923000430

(visited on 04/09/2025).

https://web.archive.org/web/20250226164043/https://www.techtarget.com/searchsoftwarequality/news/366599175/CrowdStrike-outage-underscores-software-testing-dilemmas
https://web.archive.org/web/20250306211836/https://www.theguardian.com/technology/article/2024/jul/19/crowdstrike-microsoft-outage
https://doi.org/10.1109/IWAST.2012.6228988
http://ieeexplore.ieee.org/document/6228988/
https://web.archive.org/web/20250309052557/http://www.extremeprogramming.org/rules/unittests.html
https://doi.org/10.1145/3452853.3452872
https://dl.acm.org/doi/10.1145/3452853.3452872
https://doi.org/10.1016/j.jss.2023.111804
https://www.sciencedirect.com/science/article/pii/S0164121223001991
https://doi.org/10.1145/1046931.1046944
https://dl.acm.org/doi/10.1145/1046931.1046944
https://doi.org/10.1002/stvr.1639
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1639
https://doi.org/10.1038/s41598-023-35728-x
https://www.nature.com/articles/s41598-023-35728-x
https://doi.org/10.48550/arXiv.2504.07208
http://arxiv.org/abs/2504.07208
https://doi.org/10.1038/s41562-024-02090-5
https://doi.org/10.1038/s41562-024-02090-5
https://doi.org/10.1177/07311214211022391
https://journals.sagepub.com/doi/10.1177/07311214211022391
https://doi.org/10.1016/j.patter.2023.100706
https://linkinghub.elsevier.com/retrieve/pii/S2666389923000430


9

[14] T. Dybå, “An Instrument for Measuring the Key Factors of

Success in Software Process Improvement,” Empir. Softw. Eng.,

vol. 5, no. 4, pp. 357–390, 2000.

[15] ICSE, MSR 2025 - Registered Reports -

MSR 2025, Apr. 2025. [Online]. Available:

https://web.archive.org/web/20250409135823/https://2025.msrconf.org/track/msr-2025-registered-reports?#Call-for-Registered-Reports

(visited on 04/09/2025).

[16] EMSE, Registered Reports | Empirical Soft-

ware Engineering - An International Journal,

2025-04-09, Apr. 2025. [Online]. Available:

https://web.archive.org/web/20250409135914/https://emsejournal.github.io/registered reports/

(visited on 04/09/2025).

[17] M.-A. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou,

“The who, what, how of software engineering research: A

socio-technical framework,” en, Empirical Software Engineer-

ing, vol. 25, no. 5, pp. 4097–4129, Sep. 2020, ISSN: 1573-

7616. DOI: 10.1007/s10664-020-09858-z. [Online]. Avail-

able: https://doi.org/10.1007/s10664-020-09858-z (visited on

01/30/2023).

[18] B. A. Kitchenham and S. L. Pfleeger, “Personal Opinion

Surveys,” en, in Guide to Advanced Empirical Software

Engineering, Springer London, 2008, pp. 63–92,

ISBN: 978-1-84800-043-8 978-1-84800-044-5. DOI:

10.1007/978-1-84800-044-5 3. [Online]. Available:

http://link.springer.com/10.1007/978-1-84800-044-5 3

(visited on 03/04/2025).

[19] B. A. Kitchenham and S. L. Pfleeger, “Principles

of survey research: Part 3: Constructing a survey

instrument,” en, ACM SIGSOFT Software Engineering

Notes, vol. 27, no. 2, pp. 20–24, Mar. 2002, ISSN: 0163-

5948. DOI: 10.1145/511152.511155. [Online]. Available:

https://dl.acm.org/doi/10.1145/511152.511155 (visited on

02/11/2025).

[20] J. Linåker, S. Sulaman, M. Host, and R. de Mello,

Guidelines for Conducting Surveys in Software

Engineering. Lund University, 2015. [Online]. Available:

https://portal.research.lu.se/files/6062997/5463412.pdf.

[21] J. Rooksby, M. Rouncefield, and I. Sommerville,

“Testing in the Wild: The Social and Organisational

Dimensions of Real World Practice,” en, Computer

Supported Cooperative Work (CSCW), vol. 18, no. 5-6,

pp. 559–580, Dec. 2009, ISSN: 0925-9724, 1573-7551.

DOI: 10.1007/s10606-009-9098-7. [Online]. Available:

http://link.springer.com/10.1007/s10606-009-9098-7 (visited

on 01/16/2024).

[22] R. Hoda, Qualitative Research with Socio-Technical Grounded

Theory: A Practical Guide to Qualitative Data Analysis and

Theory Development in the Digital World, eng, 1st ed. 2024.

Springer International Publishing, 2024, ISBN: 978-3-031-

60533-8. DOI: 10.1007/978-3-031-60533-8.

[23] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,

“Motivation in Software Engineering: A systematic literature

review,” en, Information and Software Technology, vol. 50,

no. 9-10, pp. 860–878, Aug. 2008, ISSN: 09505849.

DOI: 10.1016/j.infsof.2007.09.004. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0950584907001097

(visited on 06/24/2021).

[24] A. Franca, T. Gouveia, P. Santos, C. Santana, and

F. Da Silva, “Motivation in software engineering: A

systematic review update,” en, in 15th Annual Conference

on Evaluation & Assessment in Software Engineering

(EASE 2011), IET, 2011, pp. 154–163, ISBN: 978-1-

84919-509-6. DOI: 10.1049/ic.2011.0019. [Online]. Available:

https://digital-library.theiet.org/content/conferences/10.1049/ic.2011.0019

(visited on 04/10/2025).

[25] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and

H. Robinson, “Models of motivation in software

engineering,” en, Information and Software Technology,

vol. 51, no. 1, pp. 219–233, Jan. 2009, ISSN: 09505849.

DOI: 10.1016/j.infsof.2008.05.009. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0950584908000827

(visited on 04/10/2025).

[26] J. Verner, M. Babar, N. Cerpa, T. Hall, and S. Beecham,

“Factors that motivate software engineering teams: A four

country empirical study,” en, Journal of Systems and

Software, vol. 92, pp. 115–127, Jun. 2014, ISSN: 01641212.

DOI: 10.1016/j.jss.2014.01.008. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S016412121400020X

(visited on 04/10/2025).

[27] E. Daka and G. Fraser, “A Survey on Unit Testing Prac-

tices and Problems,” en, in 2014 IEEE 25th Interna-

tional Symposium on Software Reliability Engineering, IEEE,

Nov. 2014, pp. 201–211, ISBN: 978-1-4799-6033-0 978-1-

4799-6032-3. DOI: 10.1109/ISSRE.2014.11. [Online]. Avail-

able: http://ieeexplore.ieee.org/document/6982627/ (visited on

05/17/2022).

[28] P. Straubinger and G. Fraser, “A Survey on What Developers

Think About Testing,” in 34th IEEE International Sympo-

sium on Software Reliability Engineering, ISSRE 2023, Flo-

rence, Italy, October 9-12, 2023, IEEE, 2023, pp. 80–90.

DOI: 10.1109/ISSRE59848.2023.00075. [Online]. Available:

https://doi.org/10.1109/ISSRE59848.2023.00075.

[29] M. Touré-Tillery and A. Fishbach, “How to Measure

Motivation: A Guide for the Experimental Social

Psychologist,” en, Social and Personality Psychology Compass,

vol. 8, no. 7, pp. 328–341, Jul. 2014, ISSN: 1751-9004,

1751-9004. DOI: 10.1111/spc3.12110. [Online]. Available:

https://compass.onlinelibrary.wiley.com/doi/10.1111/spc3.12110

(visited on 03/20/2025).

[30] S. C. Misra, V. Kumar, and U. Kumar, “Identifying

some important success factors in adopting agile software

development practices,” en, Journal of Systems and Software,

vol. 82, no. 11, pp. 1869–1890, Nov. 2009, ISSN: 01641212.

DOI: 10.1016/j.jss.2009.05.052. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S016412120900123X

(visited on 04/10/2025).

[31] T. Dybå, “Factors of software process improvement success

in small and large organizations: An empirical study in the

scandinavian context,” in Proceedings of the 11th ACM SIG-

SOFT Symposium on Foundations of Software Engineering

2003 held jointly with 9th European Software Engineering

Conference, ESEC/FSE 2003, Helsinki, Finland, September

1-5, 2003, J. Paakki and P. Inverardi, Eds., ACM, 2003,

pp. 148–157. DOI: 10.1145/940071.940092. [Online]. Avail-

able: https://doi.org/10.1145/940071.940092.

[32] L. Machuca-Villegas, G. P. Gasca-Hurtado, S. M. Puente, and

L. M. R. Tamayo, “Perceptions of the human and social factors

that influence the productivity of software development teams

in Colombia: A statistical analysis,” en, Journal of Systems and

Software, vol. 192, p. 111 408, Oct. 2022, ISSN: 01641212.

DOI: 10.1016/j.jss.2022.111408. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0164121222001224

(visited on 04/10/2025).

[33] L. Machuca-Villegas, G. P. Gasca-Hurtado, S. Morillo Puente,

and L. M. Restrepo Tamayo, “An Instrument for Measuring

Perception about Social and Human Factors that Influence

https://web.archive.org/web/20250409135823/https://2025.msrconf.org/track/msr-2025-registered-reports?#Call-for-Registered-Reports
https://web.archive.org/web/20250409135914/https://emsejournal.github.io/registered_reports/
https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1007/978-1-84800-044-5_3
http://link.springer.com/10.1007/978-1-84800-044-5_3
https://doi.org/10.1145/511152.511155
https://dl.acm.org/doi/10.1145/511152.511155
https://portal.research.lu.se/files/6062997/5463412.pdf
https://doi.org/10.1007/s10606-009-9098-7
http://link.springer.com/10.1007/s10606-009-9098-7
https://doi.org/10.1007/978-3-031-60533-8
https://doi.org/10.1016/j.infsof.2007.09.004
https://linkinghub.elsevier.com/retrieve/pii/S0950584907001097
https://doi.org/10.1049/ic.2011.0019
https://digital-library.theiet.org/content/conferences/10.1049/ic.2011.0019
https://doi.org/10.1016/j.infsof.2008.05.009
https://linkinghub.elsevier.com/retrieve/pii/S0950584908000827
https://doi.org/10.1016/j.jss.2014.01.008
https://linkinghub.elsevier.com/retrieve/pii/S016412121400020X
https://doi.org/10.1109/ISSRE.2014.11
http://ieeexplore.ieee.org/document/6982627/
https://doi.org/10.1109/ISSRE59848.2023.00075
https://doi.org/10.1109/ISSRE59848.2023.00075
https://doi.org/10.1111/spc3.12110
https://compass.onlinelibrary.wiley.com/doi/10.1111/spc3.12110
https://doi.org/10.1016/j.jss.2009.05.052
https://linkinghub.elsevier.com/retrieve/pii/S016412120900123X
https://doi.org/10.1145/940071.940092
https://doi.org/10.1145/940071.940092
https://doi.org/10.1016/j.jss.2022.111408
https://linkinghub.elsevier.com/retrieve/pii/S0164121222001224


10

Software Development Productivity,” JUCS - Journal of Uni-

versal Computer Science, vol. 27, no. 2, pp. 111–134, Feb.

2021, ISSN: 0948-6968, 0948-695X. DOI: 10.3897/jucs.65102.

[Online]. Available: https://lib.jucs.org/article/65102/ (visited

on 04/10/2025).

https://doi.org/10.3897/jucs.65102
https://lib.jucs.org/article/65102/

	Introduction
	Pre-registration of hypotheses and research design

	Method
	Setting the Objective
	Research Questions

	Survey Design
	Lean literature review
	Motivation
	Human factors and software development processes
	Software testing: Opinions and needs of developers


	Hypotheses and Variables
	Software Process and Testing Motivation
	Complexity and Testing Infrastructure
	Material and Social Construction of Testing

	Summary

	Implementation
	Evaluating the Survey Instrument

