
Deconstructing Sentimental Stack Overflow Posts
Through Interviews: Exploring the Case of

Software Testing*
Mark Swillus

Delft University of Technology
The Netherlands

m.swillus@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Abstract—The analysis of sentimental posts about software
testing on Stack Overflow reveals that motivation and com-
mitment of developers to use software testing methods is not
only influenced by tools and technology. Rather, attitudes are
also influenced by socio-technical factors. No prior studies have
attempted to talk with Stack Overflow users about the senti-
mental posts that they write, yet, this is crucial to understand
their experiences of which their post is only one fragment. As
such, this study explores the precursors that make developers
write sentimental posts about software testing on Stack Overflow.
Through semi-structured interviews, we reconstruct the individ-
ual experiences of Stack Overflow users leading to sentimental
posts about testing. We use the post as an anchor point to
explore the events that lead to it and how users moved on in
the meantime. Using strategies from socio-technical grounded
theory (STGT), we derive hypotheses about the socio-technical
factors that cause sentiment towards software testing.

I. INTRODUCTION

We already know for over 40 years that software testing
is one of the most pragmatic mechanisms by which we can
ensure the quality of the software artefacts that we engi-
neer [1]–[4]. In the light of the unquestionable growing impact
that software and software supported devices are having on
our daily lives, the role of software testing becomes ever
more important. However, to this day there is a schism be-
tween widespread recommendations for software engineering
practice and our knowledge of how software testing actually
happens. The urgency to solve this conflict was also signalled
by others with a call to arms to better understand the testing
process [5], [6]. We have recently seen studies emerge that
have observed how software developers test. Beller et al. [7]
have investigated when and how developers write test cases
in their Integrated Development Environment. They observed
that around 50% of the studied projects do not employ
automated testing methods at all. But they also found out
that for almost all cases testing happens far less frequently
than developers estimate. If testing is truly considered a
last line of defense against software defects, we need to
understand why developers do or do not engineer and execute
test cases. We have already seen glimpses of this in literature.

* Accepted at the � CHASE 2023 Registered Reports Track

Studies have shown that company culture or time pressure
leads to cognitive biases during testing [8]–[10], estimations
of the time it takes to write test are often inaccurate [7],
[11], availability of documentation shapes the development
of tests [12], and that the cost/benefit of testing is often
unclear [13]. Additionally, Kasurinen et al. [11], Runeson [14],
and Daka and Fraser [15] highlight issues with motivating
developers to test software: only half of them have positive
feelings about testing, and approachability of tools is a major
factor. Their research demonstrates that technical and social
aspects which affect practitioners’ motivation and commitment
to test are interwoven. We argue that one needs to consider
the interplay of technical and social aspects to truly understand
why practitioners do (not) test. As we set out to investigate
what influences software engineers when practicing software
testing, we therefore go beyond an analysis of technical aspects
to reveal socio-technical factors that influence practitioners in
their decision-making. In line with the definition of socio-
technical systems by Whitworth et al. [16], we understand
as socio-technical factors the intertwined technical and social
factors that contextualize the creation of software artifacts.
“Social” includes for example the people, their interaction,
company policies and norms. “Technical” in this context
includes components of the technical infrastructure that enable
and support the creation of artifacts and the facilitation of
social needs (e.g., tools for communication).

Understanding socio-technical factors of software testing is
important as they directly influence the lived experience of
practitioners and have an influence on the quality of their
produced artifacts. Emotional attitudes and unhappiness for
example, which are very likely be connected to these factors
can have a detrimental effects as they can for example lead
to process divergence [17]. In the scope of an exploratory
study we have already identified factors that are linked to
attitudes about testing [18]. In [18], we have qualitatively
analyzed 200 posts and find that practitioners who ask their
questions on Stack Overflow in a sentimental way, show aspi-
ration or report discouraging circumstances. As sentimental
we consider expressions that indicate emotional arousal of
a person or statements that reflect opinionated views and

https://conf.researchr.org/home/chase-2023

subjective, sometimes judgemental perspectives. Both positive
and negative posts on Stack Overflow show that sentimental
questions are often asked to discover new approaches or to
reflect on practices. Through our analysis we were able to
pinpoint reoccurring issues that are connected with negative
and positive sentiment. For example, like Pham et al. we
find that project complexity seems to be a factor that influ-
ences decision making and ignites attitudes about software
testing [19]. We investigated how software engineers express
sentiment about testing. With the knowledge we gained we
take the next step, asking why software engineers express
sentiment by illuminating the larger context of posts that we
analysed. In this study we explore this context by interviewing
authors, reconstructing the individual experience leading to
sentimental posts. We argue that deconstructing posts in this
way gives us insights into the lived experience of software
developers and their perception of software testing. Analysing
these experiences and perceptions helps us to understand why
developers decide (not) to test. We approach the reconstruction
of experiences by first investigating how and why sentimental
posts – in which authors ask their questions in a subjective
or emotional way – come about. Together with the authors,
we aim to explore events and circumstances that are related
to their sentimental post.

RQ1: Why are Practitioners Sentimental?

RQ1.1 Which events and circumstances lead software
engineers to post about testing on Stack Overflow?

RQ1.2 What influences them to become sentimental?

By analysing what practitioners tell us about their experi-
ence, we want to identify factors that influence motivation,
adoption and commitment to testing practices.

RQ2: Motivation and Commitment to Test

Which factors affect software developers who ask senti-
mental questions on Stack Overflow (not) to use system-
atic software testing?

In our former work that investigated how practitioners
express themselves sentimentally on Stack Overflow [18]
we developed hypotheses that approach RQ2. To guide our
investigation into RQ2, we consider these hypotheses while
remaining open to other theoretical directions. In section II
we present further details regarding the hypotheses. A more
detailed elaboration can be found in [18].

Hypotheses to Guide Interviews for RQ2

H1 The motivation to test depends on:
H1.1 The style of project management (socio-technical).
H1.2 The approachability of testing with best practices

(technical).
H1.3 How peers communicate its use and value (social).

H2 If developers have never experienced the value of
testing in larger, more complex projects, they will
not be inclined to test.

H3 Adoption or learning of testing in complex projects
provokes negative attitude towards it

H4 Adoption of or change in software testing is inspired
and determined by shared, social experiences, and not
so much by tools and technology.

Finally, we want to understand how the attitude towards
testing and the way in which it is carried out changes over time
as participants do (not) gain knowledge and confidence about
software testing approaches through experience. By analysing
and comparing interviews we want to identify the possible
different trajectories that software developer can take as they
change roles and responsibilities regarding the development of
software and how it influences they way in which they perceive
testing.

RQ3: Evolving Attitudes About Testing

How does the subjective perception and experience of
software testing change over time?

In semi-structured interviews we use the Stack Overflow
post of the interviewee as a chronologic anchor point. We
explore the events that lead to it, and reflect together with the
participants how they moved on in the meantime. By setting
our analysis of posts into contrast with the perspectives that
participants explain to us in interviews we derive hypotheses
about socio-technical factors that cause sentiment towards
software testing.

II. HYPOTHESES

Whether practitioners of software engineering have a pos-
itive or negative attitude towards testing depends on many
individual factors. Efficiency in testing, and the willingness to
systematically test software is not only a matter of tools and
technology. In our study of posts on Stack Overflow [18] we
find that a confrontation with challenging testing scenarios can
under some circumstances cause negative feelings. We know
that developers distance themselves from tasks to which their
unhappiness relates [17]. The confrontation with challeng-
ing scenarios can therefore lead to withdrawal from testing,
potentially resulting in process deviation and reduced code
quality. However, we also see that challenges can increase the
motivation or ambition of practitioners in the case of software
testing. Creativity and being able to make a difference can
make the engineering of test suites worthwhile, even when

challenges arise. Whether engineering of sophisticated test
cases leads to increased motivation or withdrawal we therefore
argue, highly depends on context.

Additionally Meyer et al. [20] found out that on good work-
days, developers make progress and create value for projects
they consider meaningful. On good days, they spend their
time efficiently, with little administrative work, and without
facing infrastructure issues; what makes a workday typical
and therefore good is primarily assessed by the match between
developers’ expectations and reality. We argue that hindrances
to engineers who are working on test cases, created for exam-
ple by infrastructure issues, overly complicated development
environments, or constraints introduced through the project
management style affect practitioners’ attitude towards
testing (H1.1). We hypothesise that practitioners are moti-
vated to invest their time into testing, when best-practices or
examples from documentations can easily be applied (H1.2).
Even more so if they and their peers communicate the value
that systematic testing can bring to projects (H1.3).

Accordingly, practitioners who already consider testing a
valuable building block of software engineering are ambitious
and aspirational about it. We further hypothesize that the
value of testing is not evident to practitioners that never
experienced its benefits in larger, complex projects (H2).
Observations of Pham et al. [19] seem to support this hypoth-
esis. They identified that novice developers adjust their testing
effort according to the perceived complexity of code. A project
has to be complex to warrant testing to be beneficial. We
suggest that there is a huge potential for negative experiences
here. Practitioners only start to test when they perceive a
project as complex enough, but in those cases testing in not
easily approachable anymore. Complexity we argue causes
unexpected behaviors and makes best-practices hard to ap-
ply. If not supported by more experienced peers within a
project, the adoption of testing in complex projects can
provoke negative feelings and potentially a consequential
withdrawal from testing (H3). Pham et al. [19] even report
that some students develop an anxious attitude towards testing
while they learn it.

Positive feelings or ambitions mentioned in posts on Stack
Overflow are often self-aroused for example through engage-
ment with inspiring resources like books or blogs. Daka
and Fraser also identified that peer pressure is only rarely
mentioned as a motivating factor to write unit tests; the driving
force for a developer to use unit testing is supposedly their own
conviction [15]. We contend however that project specific non-
technical factors like the knowledge of testing within a team
and the way in which developers contribute to the project do
play an important role. Changing of attitude about testing,
so we hypothesize, may be stimulated by the adoption of
new testing tools, but more crucially, change is inspired by
human and social interaction and determined by shared
experiences (H4).

III. PARTICIPANTS AND DATASET

In a prior study we qualitatively analyzed 200 Stack Over-
flow posts about software testing [18]. Stack Overflow posts
are living documents which are edited by their authors and
moderators and extended with comments sometimes even a
decade after they were created. We analyzed if and how
practitioners express sentiment about software testing in posts
and what the circumstances are that practitioners describe
when they express sentiment. We considered posts to be sen-
timental when questions are asked in an emotional, subjective
way, demonstrating that their author is in some way aroused,
for example when authors indicate an aversion or attraction
to testing. The replication package which contains all posts
and the output of our work is publicly accessible [21]. Of
the 200 posts that we manually analysed, 108 turned out to
be sentimental, reflecting negative, positive or both attitudes.
Based on our analysis we constructed 22 focused codes and
four analytical categories. Subsequently, we assigned codes
and categories to all posts. This has enabled us to work with
the dataset systematically by comparing data and establishing
connections between underlying themes in the dataset. Coding
and categorization illuminate what practitioners write about
when they are sentimental, how they express their sentiment.
Our exploratory work also already explores the reasons for
sentimentality in posts.

For our interviews we recruit subjects from the list of
authors who wrote the posts we analyzed. During interviews
posts serve as chronological anchor points to explore the
events leading to them and how attitudes, experience and
other factors have changed in the meantime. Beyond serving
as a chronological anchor point, posts provide us thematic
entry points to explore details of individual circumstances.
By deepening our understanding of practitioners‘ lived ex-
periences through interviews we will refine the preliminary
findings of our former work. We for example argue that the
practitioner writing the following post has an aspirational
attitude but expresses both a positive and negative sentiment
about testing. “I’m refactoring one big complicated piece of
code [...]. So, I need to write a unit test [...]. After googling
I came up with 2 ideas [...]. Am I missing some silver bullet?
Possibly, DBUnit is the tool for this?” We hypothesise that
even when aspirational, practitioners can develop negative
attitudes because they face their ambiguities about testing
too late. They get motivated to use testing only when the
complexity of their project has reached a threshold that is
very hard to overcome without experience in testing. In an
interview we could for example explore the post mentioned
above further. Focusing the interview on the circumstances
that required refactoring of the code and why the necessity of
testing arose in this context will allow us to put our analysis
into a bigger context. In addition to the refinement of our
preliminary work, we thereby explore new vantage points for
theory construction to answer RQ1–3.

As we approach data collection and analysis within the
framework of socio-technical grounded theory (STGT) [22],

incorporating strategies from constructivist grounded theory,
we follow Charmaz’ recommendations not to pre-determine
the sample size that is required for us to reach theoretical
saturation [23]. Instead, using theoretic sampling we alternate
between data collection and data analysis to deepen, refine and
test the construction of analytical categories, codes or interpre-
tive theory. We will therefore continue to conduct interviews
until our analysis reaches a point at which additional data does
not provide new insights in the form of codes or categories
anymore. As we approach data gathering and analysis in this
iterative way, we continuously recruit new subjects and contact
subjects again for follow up interviews if we realize that more
details about concrete aspects are needed.

Summarized, the dataset that we will construct and make
available in form of a replication package will contain the
following artifacts:

Artifacts to be Published

Anonymized interview transcripts
– Initial interviews
– Follow-up interviews
REFI-QDAa. file containing analysed dataset
– Coded transcripts
– Categorization
– Contextual information (analytical memos)
Codebook
– Description of codes
– Inclusion and exclusion criteria
– Examples for application of codes

aREFI-QDA is an open standard that enables interoperability between
qualitative data analysis software: � QDASoftware.org

IV. EXECUTION PLAN

At the core of our study we carry out and analyse semi-
structured interviews with software developers that we recruit
from sentimental Stack Overflow posts. The analysis of these
interviews gives us insights into the lived experience of soft-
ware developers with a particular focus on how they perceive
and experience software testing. Steps 1 to 12 in Figure 1
illustrate how we prepare, conduct and analyse interviews to
systematically infer knowledge from insights that developers
give us. The circular pattern in Figure 1 which starts with
theoretic sampling 9 reflects the research methodology of
Socio-technical Grounded Theory (STGT) [22] which we use
in our study. Iteratively it leads us back to the analysis of
additional, focused interviews 7 and their incorporation into
emerging codes, categories and hypothesis until we hopefully
reach a point of saturation at which we report our findings
and possibly an interpretive theory that explains observed
phenomena.

A. Recruiting

All contributions to Stack Overflow are openly accessible
under the creative commons license, which makes Stack

Overflow very accessible for data-mining. The platform does
however not provide a way to contact users directly. We
therefore first need to identify users which we are able to
recruit via email 2 . Considering users’ right to privacy
and self-determination, we only recruit users who publish
their contact information in a way that implies that they are
expecting that this information can be used by researchers. For
example, many users reference their personal website which
often contains a Contact page that indicates how the user can
be reached in a way that is not unsolicited. If users do not
provide any such references in their Stack Overflow profile,
we refrain from using extant data to de-anonymise users as
we and others [24] consider practices to be unethical, as they
threaten the contextual integrity of participants [25].

Collecting a substantial amount of data compensates the
negative effects that misleading or fabricated accounts of
participants cause. However, going into details too far by
gathering and analysing too much data can lead to descrip-
tivism where abstraction of observed phenomena is no longer
possible [23][p. 89]. Accurately pre-determining the number
of interviews that we need to conduct is therefore difficult. For
our first round of interviews, we aim to recruit 15 participants,
selecting 5 negative posts, 5 positive posts, and 5 post with
both negative and positive sentiment about testing. During this
first round of interviews we will evaluate if those numbers are
appropriate.

In order to find recruitable participants we first consider
the 200 posts that we have analysed in our former study

1 . In case the dataset of 200 posts does not provide us
enough potential candidates for recruitment or because of
ethical considerations on which we elaborate in Section V, we
will consider additional testing related posts from the whole
stack overflow data dump, categorizing them by sentiment
using sentiment analysis tools 0 . Once we find participants
that confirm their participation, we invite them to select a date
for their interview and provide them additional information
about our intentions and the conditions of their participation
to ask them for their informed consent 3 .

B. Semi-Structured Interviews

We are still in the process of exploring the lived experi-
ences and attitudes of practitioners which includes their use
of language. We still need to learn how they refer to and
conceptualize software testing which is why we do not exactly
know how participants will interpret interview questions (yet).
To avoid imposing our own ideas and our language onto
participants, especially during the first rounds of interviews,
we therefore avoid asking questions that are too leading. This
is especially important to avoid a confirmation bias for testing
of H1-H4. Quite the opposite to imposing our theories, we
need to be able to follow unanticipated specifics, hints, and
views to gather detailed and genuine accounts of participants’.
This is fundamentally different from structured interviews in
which the researcher asks the exact same question to all
participants. To plan and guide our interviews, we therefore
base our strategy for semi-structured interviews on Charmaz‘

https://www.qdasoftware.org/

�

Analytic
Categories

Hypotheses
& Theory Codes

�
Find Recruitable Users

2

🔍
Initial Sample

Invite Participant

Initial
Interview Guide

Refined
Interview Guide

Adding
Participants

Follow-up
Interviews

Theoretic
Sampling

Iteratively Raising Level of Analysis

1
3

4

8

9

10 11

12

Analysis
of Transcript

7

🧑
Recorded
Interview

5

De-identify
Transcript

6

or

Report and
Replication Package

13

🤩😤
Sentimental
Stack Overflow Posts

Stack Overflow
Testing Posts

0
Sentiment
Analysis

Fig. 1: Execution plan that starts with recruitment of an initial group of participants 3 who are select from a dataset of
sentimental Stack Overflow posts 1 , and ends with the publication of a report 13 that contains new hypotheses and a theory
we construct through systematic, iterative data analysis 8 . We consider additional samples from the Stack Overflow data
dump 0 to protect participants’ integrity and to support our recruiting approach in case of low turnout.

intensive interviewing method which is designed as a tool to
explore a person’s substantial experience with a research topic.
By following Charmaz’ guidelines for intensive interviewing
we also guard ourselves against confirmation bias regarding
the investigation of H1-H4. In intensive interviewing the
interviewer creates room for the interviewee to tell their story.
Instead of dictating the direction of the interview through
strictly following a detailed interview guide, the interviewer
uses soft control to fill out the details of the story shared by
the interviewer [23, p. 69].

According to the method, the initial interview-guide that
we create for our first round of interviews will only be used
to apply a soft control in interviews which allows us to
gently keep participants on topic 4 . As our study progresses
and our understanding of practitioners’ experiences and their
use of language grows, we refine the interview-guide, adding
pertinent questions that allow us to systematically raise the
level of our analysis 12 to answer RQ1-RQ3. All interviews
are recorded so that the interviewer can focus their attention
on the subject, without needing to jot down notes and to avoid
mistakes when reconstructing the interviews‘ content from
memory 5 . After each interview the recording is transcribed
and anonymised, after which the recordings are destroyed
to ensure that the privacy of participants is protected 6 .
Once the transcription process is done we will analyse the
transcripts 7 .

C. Systematic Data Analysis
Through our qualitative analysis of posts on Stack Overflow

we learned that practitioners‘ sentiments towards software

testing are not caused merely by technical aspects [18].
The processes around the topic of software testing is socio-
technical in the sense that technical aspects of practice are
interwoven with social aspects. One needs to take both into
consideration to understand why practitioners become senti-
mental about testing and why they decide (not) to test the soft-
ware they develop. To lead our investigation of socio-technical
aspects, we employ strategies from Hoda’s Socio-Technical
Grounded Theory (STGT) [22]. Using codes, categories and
the preliminary interpretive theory, that we constructed in our
prior study [18], using strategies from STGT’s Basic Stage
for data collection and analysis, we now focus on what Hoda
defines as STGT’s Advanced Stage. Concretely we use the
emergent mode for data analysis and theory construction.
Working in the emergent mode for STGT studies enables
the emergence of theory through iterative data collection and
analysis. The emergent mode leads to theoretical saturation
and results in a mature theory that is grounded in the data that
was collected [22, p. 14]. Our epistemological stance with
regard to our research questions is that the lived experience
of testing practices and the experience of practitioners is
highly individual and constructed within a unique complex
socio-economic and technical context. We cannot expect that
participants fully comprehend all factors that create and form
their experience, even less can we expect them to reconstruct
all those factors in interviews with us. What they share with
us in interviews is a subjective report of what they believe
their experience constitutes. With a pragmatist attitude, we
do think however that our systematic approach will enable us

to trace factors that affect the lived experience of software
engineers when they use software testing. Within the frame-
work of Hoda’s STGT we therefore adopt a constructivist
epistemology, acknowledging that our work can only be an
interpretive translation of the complex lived experience that
practitioners describe to us. To reduce the effect that our own
ideas have on the study results, we conduct interviews and
data analysis with the necessary scientific rigour, by following
systematic methods from Charmaz’ version of constructivist
Grounded Theory [23].

We begin the analysis of transcripts by coding them line by
line using open coding 8 . After the initial round of about 15
interviews is finished, we proceed with additional rounds of
coding, summarizing and refactoring codes, also incorporating
codes of our former study [18]. Emerging themes, categories
and focused codes at this point will then guide us in the
process of theoretic sampling 9 . To reduce the likelihood
of a misinterpretation that would pose a threat to the validity
of our results, the authors will discuss the interpretation of
the data recorded in memos and developed codes, categories
and theory and resolve disagreements in a cooperative manner.
We will not provide a quantitative analysis of this process of
reliability verification as such an analysis would suggest a level
of objectivity that we do not want to claim [26]. To deepen
our understanding of emerging ideas, we conduct further, more
focused follow-up interviews with participants 11 or with new
participants 10 . Follow-up interviews will enable us to go
more into detail with participants while the recruitment of
new participants enables us to broaden theory development.
We create new interview guides for these interviews to be able
to focus on specifics that are relevant to further develop our
analysis in order to answer RQ1-RQ3. In this way, the iterative
process of theoretic sampling enables us to systematically
test and extend our hypotheses. To make this process of
data analysis and theory construction systematic, we employ
methods for constant comparison from Charmaz [23] and
Saldaña [27]. We compare for example statements and events
within one interview, statements from the same interviewee
in different interviews, or statements of different interviewees
about similar incidents. As we raise the level of analysis,
we also compare, on a more abstract level focused codes or
analytical categories that were assigned to interview segments.
We also incorporate the content of analytical memos that we
write during the whole process of data analysis. To facilitate
the process of constant comparison for theory construction we
use techniques for qualitative research like diagramming [23]
and clustering [27].

D. Reporting of Results

The execution plan of our study centers around the iterative
process of theoretic sampling and methods for constant com-
parison which, using the framework of STGT lead to theory
development.

We start with a sentimental post of a Stack Overflow
user, collect data about the context of that post through
interviews and analyse this data. As we increase the level

of analysis, we supplement the dataset of anonymised tran-
scripts by assigning codes and categorization and by writing
analytical memos. In our report we lead the reader through
this process to make transparent how we moved from a low
level of analysis at which we construct codes that describe
and summarize segments of interviews to a higher level of
analysis, that concludes with the construction of a theory. For
each level of analysis our report provides concrete examples
of application, demonstrating for example how codes were
applied to interview segments and how the categories emerged.
Apart from making our approach transparent in the report, we
present answers to RQ1-RQ3, and show how the research
questions and the hypotheses H1-H4 guided our analysis. We
also elaborate on the testing of hypotheses H1-H4 and suggest
arguments for their rejection, validation or refinement.

Finally, the reporting of the theory which we developed is
central to the publication of the results of this study. There
is however a difficulty here: it is impossible to foresee the
depth and maturity of such a theory, before we start our
analysis. We might for example realize that the research
population or the data gathering method used in this study
is not sufficient to reach theoretic saturation that is required
to report a mature theory. A conclusion could be that more
triangulation of method or data is needed in order to establish
maturity [28]. However, as Hoda emphasizes, reporting of
preliminary theories and emerging hypotheses – like we did
in our former study [18] – is important to assess and improve
the relevance and rigour [22]. The reporting of our results will
thus, even in the case that it centers around the presentation
of a preliminary theory motivate new venture points to inves-
tigate socio-technical aspects of software engineering which
will help us to better understand and ultimately enrich the
experience of software developers.

To stimulate future research and to subscribe to the values of
open science, we publish all anonymised data and our research
output – as outlined in Section III – openly in the form of a
replication package.

V. ETHICAL CONSIDERATIONS

This study investigates and reports an analysis of perspec-
tives of human subjects. We want to ensure that participants
are not harmed through our study. Neither directly through
the recruitment- or data collection process, nor indirectly
through repercussions caused by the publication of our work
and its artifacts. We also want to respect the policies of
online platforms when we extract data to identify subjects for
recruitment. For example, we are carefully considering case
by case whether to use email addresses published by users
on GitHub profile pages as it is stated in GitHub’s accepted-
use policy that extracting email addresses to send unsolicited
emails is not permitted [29].

To protect subjects from harm we consider their right
to privacy and self-determination and follow Nissenbaum’s
principles to protect contextual integrity [25]. For recruitment,
we only consider information that has been made public

by subjects in a way that implies an expectation that the
information can be used by researchers to contact them.
This includes for example email addresses referenced on
the Contact page of a personal website which has been
linked by the user on their public Stack Overflow profile.
We also consider Marwicks’s concerns about context collapse
[30]. Users on social media websites like Stack Overflow
participate and contribute within a specific social context
that is largely defined by their expectations of how their
contributions are perceived and used. Linking these contexts,
for example by establishing a link between activities on Stack
Overflow and profiles on Instagram or Twitter through de-
anonymization leads to a collapse of this context. Connecting
content that individuals contributed in different contexts can
cause unexpected and damaging consequences. We therefore
de-identify all information that participants provide us before
publication. To reduce the lieklihood of the reversal of this
de-identification, we won’t make transparent which samples
of the dataset were considered for recruitment of participants.
Additionally, after reviewing the dataset from which we select
potential participants, we will evaluate how likely a reversal of
de-identification is considering the group- and dataset size. In
case we cannot be confident in the de-identification approach
at this point, we will take additional measures and adjust our
recruiting strategy to reach that confidence.

To seek balance between transparency and protection of
subjects’ integrity when publishing our results, we will ask
participants to review the de-identified transcripts and allow
them to remove the parts that they are not comfortable to
share before publication.

Our study design was submitted and approved by the privacy
team and ethics council of TU Delft.

ACKNOWLEDGEMENTS

This research was partially funded by the Dutch science
foundation NWO through the Vici “TestShift” grant (No.
VI.C.182.032).

REFERENCES

[1] P. H. Carstensen and C. Sørensen, “Let’s Talk About Bugs!” vol. 7,
1995.

[2] W. C. Hetzel, The complete guide to software testing, 2nd ed. QED
Information Sciences, 1988.

[3] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing,
3rd ed. John Wiley & Sons, 2012.

[4] E. Yourdon, Managing the system life cycle, 2nd ed., ser. Yourdon Press
computing series. Yourdon Press, 1988.

[5] A. Bertolino, “Software Testing Research: Achievements, Challenges,
Dreams,” in Future of Software Engineering (FOSE ’07), May 2007,
pp. 85–103.

[6] M. V. Mäntylä, J. Itkonen, and J. Iivonen, “Who tested my software?
Testing as an organizationally cross-cutting activity,” Software Quality
Journal, vol. 20, no. 1, pp. 145–172, Mar. 2012. [Online]. Available:
http://link.springer.com/10.1007/s11219-011-9157-4

[7] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer Testing in the IDE: Patterns, Beliefs, and
Behavior,” IEEE Transactions on Software Engineering, vol. 45, no. 3,
pp. 261–284, Mar. 2019. [Online]. Available: https://ieeexplore.ieee.
org/document/8116886/

[8] G. Çalıklı and A. B. Bener, “Influence of confirmation biases of
developers on software quality: an empirical study,” Software Quality
Journal, vol. 21, no. 2, pp. 377–416, Jun. 2013. [Online]. Available:
http://link.springer.com/10.1007/s11219-012-9180-0

[9] R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph,
“Cognitive Biases in Software Engineering: A Systematic Mapping
Study,” IEEE Transactions on Software Engineering, vol. 46,
no. 12, pp. 1318–1339, Dec. 2020. [Online]. Available: https:
//ieeexplore.ieee.org/document/8506423/

[10] I. Salman, P. Rodriguez, B. Turhan, A. Tosun, and A. Gureller,
“What Leads to a Confirmatory or Disconfirmatory Behaviour of
Software Testers?” IEEE Transactions on Software Engineering,
vol. 48, no. 4, pp. 1351–1368, 2022. [Online]. Available: https:
//ieeexplore.ieee.org/document/9179007/

[11] J. Kasurinen, O. Taipale, and K. Smolander, “Analysis of Problems
in Testing Practices,” in 2009 16th Asia-Pacific Software Engineering
Conference. IEEE, Dec. 2009, pp. 309–315. [Online]. Available:
http://ieeexplore.ieee.org/document/5358706/

[12] M. Aniche, C. Treude, and A. Zaidman, “How Developers Engineer
Test Cases: An Observational Study,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4925–4946, Dec. 2022.

[13] A. Begel and T. Zimmermann, “Analyze this! 145 questions for
data scientists in software engineering,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, May 2014,
pp. 12–23. [Online]. Available: https://dl.acm.org/doi/10.1145/2568225.
2568233

[14] P. Runeson, “A survey of unit testing practices,” IEEE Software,
vol. 23, no. 4, pp. 22–29, Jul. 2006. [Online]. Available: http:
//ieeexplore.ieee.org/document/1657935/

[15] E. Daka and G. Fraser, “A Survey on Unit Testing Practices and
Problems,” in 2014 IEEE 25th International Symposium on Software
Reliability Engineering. IEEE, Nov. 2014, pp. 201–211. [Online].
Available: http://ieeexplore.ieee.org/document/6982627/

[16] B. Whitworth, “The Social Requirements of Technical Systems:,”
B. Whitworth and A. de Moor, Eds. IGI Global, 2009, pp. 2–22.
[Online]. Available: http://services.igi-global.com/resolvedoi/resolve.
aspx?doi=10.4018/978-1-60566-264-0.ch001

[17] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What
happens when software developers are (un)happy,” Journal of Systems
and Software, vol. 140, pp. 32–47, Jun. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121218300323

[18] M. Swillus and A. Zaidman, “Sentiment Overflow in the Testing Stack:
Analysing Software Testing Posts on Stack Overflow,” Feb. 2023.
[Online]. Available: http://arxiv.org/abs/2302.01037

[19] R. Pham, S. Kiesling, O. Liskin, L. Singer, and K. Schneider, “Enablers,
inhibitors, and perceptions of testing in novice software teams,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. ACM, Nov. 2014,
pp. 30–40. [Online]. Available: http://doi.org/10.1145/2635868.2635925

[20] A. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a Good
Day: The Daily Life of Software Developers,” IEEE Transactions on
Software Engineering, vol. 47, no. 5, pp. 863–880, 2021.

[21] M. Swillus and A. Zaidman, “Replication Package for Sentiment
Overflow in the Testing Stack,” May 2022. [Online]. Available:
https://zenodo.org/record/6595110

[22] R. Hoda, “Socio-Technical Grounded Theory for Software Engineering,”
IEEE Transactions on Software Engineering, vol. 48, no. 10, pp. 3808–
3832, Oct. 2022.

[23] K. Charmaz, Constructing grounded theory, 2nd ed., ser. Introducing
qualitative methods. Sage, 2014.

[24] N. E. Gold and J. Krinke, “Ethics in the mining of software repositories,”
Empirical Software Engineering, vol. 27, no. 1, p. 17, Nov. 2021.
[Online]. Available: https://doi.org/10.1007/s10664-021-10057-7

[25] H. Nissenbaum, “A Contextual Approach to Privacy Online,” Daedalus,
vol. 140, no. 4, pp. 32–48, Oct. 2011. [Online]. Available:
https://doi.org/10.1162/DAED a 00113

[26] N. McDonald, S. Schoenebeck, and A. Forte, “Reliability and Inter-rater
Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 72:1–72:23, Nov. 2019. [Online].
Available: http://doi.org/10.1145/3359174

[27] J. Saldaña, The coding manual for qualitative researchers, 2nd ed.
SAGE, 2013.

http://link.springer.com/10.1007/s11219-011-9157-4
https://ieeexplore.ieee.org/document/8116886/
https://ieeexplore.ieee.org/document/8116886/
http://link.springer.com/10.1007/s11219-012-9180-0
https://ieeexplore.ieee.org/document/8506423/
https://ieeexplore.ieee.org/document/8506423/
https://ieeexplore.ieee.org/document/9179007/
https://ieeexplore.ieee.org/document/9179007/
http://ieeexplore.ieee.org/document/5358706/
https://dl.acm.org/doi/10.1145/2568225.2568233
https://dl.acm.org/doi/10.1145/2568225.2568233
http://ieeexplore.ieee.org/document/1657935/
http://ieeexplore.ieee.org/document/1657935/
http://ieeexplore.ieee.org/document/6982627/
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-264-0.ch001
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-264-0.ch001
https://linkinghub.elsevier.com/retrieve/pii/S0164121218300323
http://arxiv.org/abs/2302.01037
http://doi.org/10.1145/2635868.2635925
https://zenodo.org/record/6595110
https://doi.org/10.1007/s10664-021-10057-7
https://doi.org/10.1162/DAED_a_00113
http://doi.org/10.1145/3359174

[28] M.-A. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou,
“The who, what, how of software engineering research: a socio-
technical framework,” Empirical Software Engineering, vol. 25,
no. 5, pp. 4097–4129, Sep. 2020. [Online]. Available: https:
//doi.org/10.1007/s10664-020-09858-z

[29] GitHub, “GitHub Acceptable Use Policies,” Apr. 2023.
[Online]. Available: https://github.com/github/docs/blob/main/content/

site-policy/acceptable-use-policies/github-acceptable-use-policies.md#
7-information-usage-restrictions

[30] A. E. Marwick and d. boyd, “I tweet honestly, I tweet passionately:
Twitter users, context collapse, and the imagined audience,” New Media
& Society, vol. 13, no. 1, pp. 114–133, Feb. 2011. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1461444810365313

https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1007/s10664-020-09858-z
https://github.com/github/docs/blob/main/content/site-policy/acceptable-use-policies/github-acceptable-use-policies.md#7-information-usage-restrictions
https://github.com/github/docs/blob/main/content/site-policy/acceptable-use-policies/github-acceptable-use-policies.md#7-information-usage-restrictions
https://github.com/github/docs/blob/main/content/site-policy/acceptable-use-policies/github-acceptable-use-policies.md#7-information-usage-restrictions
http://journals.sagepub.com/doi/10.1177/1461444810365313

	Introduction
	Hypotheses
	Participants and Dataset
	Execution Plan
	Recruiting
	Semi-Structured Interviews
	Systematic Data Analysis
	Reporting of Results

	Ethical considerations
	References

